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1 Introduction 
 
The 5G-OPERA project aims to build a Franco-German ecosystem for private 5G networks 
under the joint leadership of TU Dresden and EURECOM (Sophia Antipolis). The focus of the 
project is the idea of open hardware and software with open interfaces in the area of mobile 
communication networks to allow multi-vendor options for technical equipment.  The goal 
of the project is to ensure that the hardware and software of all project partners can work 
together. In addition to setting up reference test environments and demonstrators in Industry 
4.0 environments, 5G-OPERA is supporting the trials in the three demonstration projects 
and will advise all additional projects joining the program. For this report we focus on the 
improvements of positioning features during this project. 
 
On the RAN side, we implemented the signals, procedures and estimation algorithms to 
support 5G NR positioning. We make use of either UL or DL based positioning based on Time 
DiƯerence of Arrival (TDoA) and we will implement the corresponding signals and 
procedures in OAI. TDoA methods measure the time diƯerence of the reference signals 
received by the UE in DL or at the base stations in UL and use their precise timing to estimate 
the location of the UE. In the DL, this can be achieved using the Downlink Positioning 
Reference Symbols (PRS) (Rel. 16) whereas in the UL this can be achieved using the UL 
Sounding Reference Symbols (SRS) as specified in Rel. 15 (Fraunhofer IIS, Eurecom & TU-
D.). Eurecom developed techniques for handling multipath propagation, which complicates 
most positioning techniques; also, the precision of narrowband scenarios is improved by 
aggregating multiple carriers/bands. Finally, the exploitation of multiple antennas will be 
pursued to improve positioning precision, possibly by working in beam space. 
 
CEA-LETI addressed the issue of localisation in diƯicult environments and with narrowband 
signals (e.g., NB IoT). CEA use ML algorithms applied to a variety of received signal features 
(TDoA, fading) to extract relevant information w.r.t. location. These algorithms learn to 
recognize situations such as obstructions, and to find the adequate correction to the 
estimated position. 
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2 Positioning in 5G NR and NB-IoT Overview 
2.1 Concept phase  
CEA-Leti addresses the challenge of positioning within Narrowband Internet of Things (NB-
IoT) 5G networks, a technology used to deploy Low Power Wide Area Networks (LPWAN). The 
developed algorithms, integrated into the LMF, are based on the uplink time diƯerence of 
arrival (UL-TDOA) scheme, similar to those used by other partners. CEA-Leti specifically 
aims to improve positioning performance in the context of NLOS propagation, which is 
frequently encountered in urban or peri-urban scenarios. 
UL-TDOA localization of a User Equipment (UE) requires multiple valid measurements with 
gNB (3 in 2D, 4 in 3D) to compute a position. However, in urban or peri-urban scenarios, 
buildings may obstruct direct transmissions between the UE and gNB, resulting in only 
reflected signals being received. This reflection causes a significant bias in the propagation 
time due to the extra distance traveled by the signal. For instance, as illustrated in Figure 3, 
the LOS propagation between the UE and gNB #3 is blocked by building B1, and only the 
reflected signal traveling distance d3B is received. Additionally, even when the direct path is 
received, it may be biased by reflected signals from various obstacles. This is shown in the 
transmission between the UE and gNB #2 in Figure 1, where the received signal is a mix of 
the a transmission travelling distance d2A and d2B.  

Figure 1 : illustration of urban scenario where buildings may block the direct propagation between UE and gNB. 

Many of the State-of-the-art techniques used to overcome limitations in such environments 
relies on measurements redundancy, which permit to detect and discard or correct biased 
measurements. However, in the scope of 5G positioning, such approaches are not tractable 
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because it requires a network with high density of base stations, but this implies deployment 
cost that are significantly higher for limited benefits for the user.  
Therefore, CEA-Leti proposes a new approach to improve accuracy and robustness for 5G 
positioning in challenging environments, while preserving the infrastructure complexity. This 
approach uses meta-information, such as 3D maps of buildings, to identify signals that may 
have been aƯected by complex propagation. Knowledge of the presence of obstacles on the 
path of a given transmission is used to weight the corresponding measurement as illustrated 
in Figure 2.  
 

 
Figure 2 : Position solver architecture based on map information. 

 
To analyze propagation using map information, like with ray tracing tools, it is necessary to 
know the positions of both the Base Station (gNB) and the User Equipment (UE). This creates 
a paradox: the UE's position is required to calculate its position. 
To address this issue, we will test a set of predefined positions, selected on a grid. The 
algorithm will evaluate the likelihood of each predefined position based on the received 
measurements and map information, assigning a score to each. This approach allows the 
predefined positions to be used in processing the map data. Finally, an estimator will 
determine the final solution based on the scores of all tested positions. The architecture of 
the overall positioning algorithm is illustrated in the following diagram (Figure 3).  
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Figure 3 : Global architecture of the positioning algorithm. 

Predicting signal propagation from 3D models is highly challenging. To tackle this, we tested 
two approaches : the "single ray" method and the "artificial intelligence" method. 
The "single ray" method relies on LOS and NLOS information, utilizing a single-ray tracing 
technique and a maximum likelihood estimator (MLE). In contrast, the "artificial intelligence" 
method analyzes more complex features using advanced AI techniques.  

2.1.1 Single-ray approach 
This approach uses a simple propagation model based on a single ray between the gNB and 
the UE to determine if the propagation conditions are in LOS or NLOS, assuming that the 
former will have lower errors than the latter. 
 
A. Measurement model 
Localization based on TOA measurements requires that all receiving gNB are synchronized 
which is the case in 5G networks.  However, such a synchronization cannot be assumed for 
UE  whose departure time t0 is unknown and must be estimated in addition to the position. 
Hence, we consider an UE at position 𝐫 = [𝑥 𝑦 𝑧] ் that performs some measurements 
with gNB at positions 𝐫𝐛 = [𝑥 𝑦 𝑧] ்.  
TOA measured with respect to a gNB can be modelled as  
 

𝑇 = ℎ(𝐫, 𝑡, 𝐫) + 𝜈 Eq.  2.1 

with  

ℎ(𝐫, 𝑡, 𝐫) =
1

𝑐
ඥ(𝑥 − 𝑥)ଶ + (𝑦 − 𝑦)ଶ + (𝑧 − 𝑧)ଶ + 𝑡 

Eq.  2.2 

 
where  t0 is the unknown departure time of the signal and 𝜈 a Gaussian distributed random 
variable that represents all the errors of the measurement process, including gNB related 
errors (e.g. synchronisation errors, time of arrival detection uncertainty) but also channel 
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errors due to multipath and NLOS propagation. Although channel is essentially static and 
thus, channel errors are highly correlated over time (i.e. channel errors are biased), here we 
are considering their spatial distribution that we assume to be independent from one 
position to another (i.e. Ε൫𝑇, 𝑇൯ = 0 for j ≠ j ). In the general case, we shall assume that the 
error distribution is diƯerent for every considered position r because propagation conditions 
vary which makes the accuracy diƯicult to predict. We also assume that the TOA error 
distribution measured by a gNB when transmitter is located at position r depends only on 
the channel conditions between these two points: 
 

𝜈~ ቊ
𝑁(0, 𝜎ைௌ

ଶ )      𝑖𝑓 = 1

𝑁(0, 𝜎ேைௌ
ଶ )    𝑖𝑓 𝛿ைௌ(𝒓, 𝒓𝒃) = 0

 
Eq.  2.3 

 
with 𝛿ைௌ൫𝒓, 𝒓𝒈൯ a function that is equal to 1 if the positions 𝒓 and 𝒓𝒃 are in LOS, and 0 
otherwise. Motivations for distinguishing between these two cases are that, in NLOS 
situations, the direct path of the radio wave can be blocked (e.g. by a building) and only 
reflected signals are received by the gateway. Because reflected signals travel longer 
distances than the direct path, the eƯective time-of-flight (TOF) experiences an excess delay 
resulting in a stronger TOA error than for direct propagation. 
Therefore, positioning problem can be formulated as  
 

𝐫ො𝒌 = arg min 𝑝�̅�𝒌
(𝐫, 𝑇ଵ, … , 𝑇ே) Eq.  2.4 

with  

𝑝�̅�𝒌
(𝐫ො𝒌, 𝑇ଵ, … , 𝑇ே) =  ቆ

𝑇 − ℎ(𝐫ො𝒌, �̂�, , 𝐫)

 𝜎௦/ேைௌ(�̅�𝒌, 𝐫)
ቇ

ଶே

ୀଵ

 
Eq.  2.5 

 
B. Algorithm 
As explained before, the main diƯiculty with the computation of the solution of Eq.  2.4, is 
that it depends on the true position to determine the value of 𝜎௦/ேைௌ(𝐫, 𝐫). Our 
approach consists in computing the maximum likelihood  𝑝�̅�𝒌

(𝐫ො𝒌, 𝑇ଵ, … , 𝑇ே) assuming given 
positions from a set �̅�𝒌 ∈ {�̅�𝒌}𝒌ୀ𝟏..𝑲 . Typically, tested positions are chosen on a grid of 
possible UE positions, typically spanning a city with a step of e.g. 10m.  
The score for each of the tested solution is computed using   
 

𝑆 = 𝑝�̅�𝒌
൫𝐫ො𝒌, �̂�,, 𝑇ଵ, … , 𝑇ே൯ +  (𝐫ො𝒌 − �̅�𝒌)்𝑃

ିଵ(𝐫ො𝒌 − �̅�𝒌) Eq.  2.6 

with 𝑃 a 3x3 symmetric matrix that is used to weight the mismatch between the tested 
position �̅�𝒌 and the computed position 𝐫ො𝒌.  
For instance, 𝑃  could be a diagonal matrix such as  

𝑃 = 

𝜎௫
ଶ 0 0

0 𝜎௬
ଶ 0

0 0 𝜎௭
ଶ

 

Eq.  2.7 
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In that case, diagonal coeƯicients 𝜎௫
ଶ, 𝜎௬

ଶ and 𝜎௭
ଶ are used to tune the mismatch tolerance 

for each of the coordinates. If they are set to 𝜎௫ = 1m, 𝜎௬ = 2m and 𝜎௭ = 3m, this would 
mean that a mismatch of the same or smaller magnitude than these values on each 
coordinate will result on a high score, but a larger mismatch will quickly drop it to a low 
value.   
Also, to speed-up the algorithm, the visibility indicators 𝛿ைௌ(𝒓𝒊, 𝒓𝒃)  are pre-computed for 
all positions from that grid, using single ray-tracing. Results of this precomputation is 
simply the so-called visibility map (see Figure 4), which indicates for each point from that 
grid the visibility value with respect to a given gNB.  
 

 
Figure 4 : Example of visibility map for a base station (green indicates LOS propagation, red NLOS) 

The algorithm computes the probability of each tested point to be the UE position by 
evaluating Eq.  2.5 given a set of TOA measurements.  Figure 5 shows an example of 
probability map computed for the city of Grenoble, France, from 5 TOA measurements.  
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Figure 5 : Example of probability map computed for the city of Grenoble, France, from a set of 5 measurements. 

It shows a region with high probability (in red) that includes the true position obtained from 
GNSS receiver.  
Finally, the estimator block computes the final position which is output from the algorithm. 
It can simply output the position having the highest score, in that case it corresponds to a 
Maximum a posteriori (MAP) Estimator or it computes the mean value of all positions 
weighted by their scores  

𝐫ො =
1

∑ 𝑆

ୀଵ

 �̅�𝒌



ୀଵ

𝑆  
Eq.  2.8 

2.1.2 Artificial Intelligence based approach  
 
The single-ray approach is limited to a simple model of the propagation conditions, where 
only the LOS / NLOS indicator is taken into account. However, real propagation may be much 
more complex, with e.g. only weak NLOS propagation that does not aƯect the direct path 
and does not result into a strong error, or, at the opposite, LOS situations that are mixed with 
reflected signals that cause poor measurements.  
In this approach, we try to improve the prediction of the signal quality from a map using AI. 
Underlying idea is that, without simulating a complex propagation, an AI can infer this quality 
from the surrounding environment if it has learned it from similar configurations.  
A. System architecture 
The algorithm processes two types of information to predict weights 𝜔   associated to a TOA 
𝑇 . The first type of information comprises the per-link features, which are exclusively related 
to measurement 𝑇 remain independent from other measurements. These features 
encompass map attributes describing the propagation of the corresponding link, as well as 
other metrics such as Received Signal Strength (RSS) and gNB height. 
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The second type of features consists of joint features that encapsulate relative information 
among all measurements, proving highly eƯective in identifying poor measurements. This 
concept resembles a consistency test of the solution, akin to conventional outlier detection 
techniques, but tailored to AI. While state-of-the-art approaches often overlook per-link 
features atop consistency tests, our proposed method amalgamates all available 
information through AI. 
 

 
Figure 6 : General architecture for positioning based on map information. 

 
 
A. Per-link Features 
Various per-link measurement features can be enlightening and advantageous as neural 
network inputs, including gNB height, RSS, and notably, map information. 
The gNB height holds significance because signals from lower heights are more susceptible 
to Non-Line-of-Sight (NLOS) conditions. Low RSS values exacerbate tracking noise, 
consequently amplifying TOA measurement noise. 
Map features introduce complexity due to the extensive spatial area necessitating accurate 
modeling between the emitter and receiver. All potential obstacles along the wave path can 
influence propagation, including more distant surfaces via signal reflection. Moreover, any 
object of comparable length to the wavelength (e.g., 10cm) can potentially interfere with the 
wave, demanding spatial resolution at commensurate scales in the building model. 
Balancing the vast areas to model and the minute resolution required results in copious 
data. For instance, considering a transmission between an emitter and receiver 1km apart, 
where all buildings within a 500m radius from the midpoint are depicted on an image with a 
10 cm resolution (1 pixel corresponding to 10cm), the image size would be approximately 
7.8Mpx, necessitating a large neural network for processing.  
A preliminary strategy to curtail the volume of input information from the map entails 
modeling only the surrounding environments of the User Equipment (UE) and the gNB. The 
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underlying assumption posits that signal blockage primarily occurs proximate to the 
antennas, with obstacles distant from both the emitter and receiver playing a minimal role 
in propagation. Using the prior example, a 30m-long building situated at the transmission 
midpoint (i.e., 500m) can be readily bypassed by the wave due to its negligible angular 
deviation. Conversely, the same building in close proximity to the antenna will impede signal 
transmission. Regarding the more complex scenario of urban propagation with high building 
density, it has been observed experimentally that the measured extra path followed by the 
wave corresponds to a propagation “above the roofs”. It seems that the less attenuated path 
between two devices is obtained when the wave reflect on buildings faces surrounding e.g. 
the transmitter until it reaches the top of the buildings, then propagates without any obstacle 
(i.e. above the roofs), and reflects down on the walls of buildings surrounding the receiver to 
reach this latter.  In that scenario only the buildings close from the transmitter and receiver 
are determinant.  
In a first version, buildings were represented using small (e.g 250 x 250 pixels) “height 
images” ( each pixel contains the height of the  building, 0 if there is no building at the given 
position), each of them modelling the scene around the emitter and the receiver (see Figure 
7). Separate images covering the same areas are used to represent  the “direct path” ray 
linking the emitter and the receiver, which indicates the algorithm the direction of arrival.  
 

 
Figure 7: illustration of map representation using height images 

However, tests conducted using this map representation were unsuccessful, and this 
representation has been abandoned.  
One possible reason the image-based approach failed is that the input size and complexity 
were too high relative to the size of the learning dataset, preventing the network from 
correctly interpreting the information contained in the images. Therefore, we adopted a more 
compact representation of the map to facilitate the learning of weight predictions.  
In this second version, possible interactions of the wave with surrounding buildings are 
described using ray-tracing methods, but with a limited number of rays used compared to 
other methods.  
Here, the computed rays are :  

  The direct path (in black in Figure 8) 

It is defined as the segment between the gNB and the UE, very straightforward to compute.  
 One diƯracted path  (in grey in Figure 8)  

In case where there are one or several buildings intercept the direct path, a reflected path is 
computed. It is defined as the shortest bypass of the blocking buildings between the gNB 
and the UE, using 2 segments that connect on the edge of one of the blocking buildings, with 
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none of the 2 segments being intercepted by any building from the map. Figure 8 shows the 
main steps to compute the diƯracted path.  

 
Figure 8 : steps for computing the diffracted path 

 One of several reflected paths (in yellow in Figure 10) 

Reflected paths correspond to waves that reflect oƯ building faces, often causing significant 
delays in the TOAs. These paths may be present even when the direct path is detected. 
Depending on the receiver's ability to discriminate multipath components, they can 
introduce substantial biases, even under LOS conditions. The number of reflected paths can 
be unlimited, based on the number of buildings or reflecting surfaces near the receiver. 
However, we limit the maximum number of reflected paths to a fixed value (e.g., Nreflected =2) 
because we believe the ranging errors are dominated by the "shortest" reflected paths. These 
are closer to the direct path and harder to discriminate. 

Step 1 : Is a building obstructing the 
direct path ?   

Yes

Step 2 : For all edges pi of all buildings in the 
scene  

Step 3 : Compute the connecting 
point pi on the edge ei that minimize 

the distance  
𝑑ௗ = ‖𝐫𝐁 − 𝐩𝐢‖ + ‖𝐫 − 𝐩𝐢‖ 

 

Step 7 : Output values  
dmin,imin ; pmin 

No 

Step 4 : Is on of the 2 segments  (rB,pi) 
or (r,pi) crossing a building ?  

Step 0 : Initialize : 
dmin = -1, imin = -1, pmin=[0,0,0]T

 

 

Yes 

No 

Step 5 : Check if it is the shortest path 
Is dmin=-1 or  ddiff< dmin 

No

Step 6 : Update values  
d

min
= d

diff,imin = i, pmin= pi 

Yes 

Finished ? 
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Figure 9 : steps for computing the reflected paths 

Reflected paths are defined by two segments between the gNB and the UE, connected on a 
building face, with neither segment crossing a building. Figure 9 illustrates the steps to 
compute a reflected path. 
Once the direct, diƯracted, and reflected paths are determined, the algorithm extracts 
features that characterize these paths to serve as inputs for the neural network. The idea is 

Step 2 : For all faces fi of all buildings in the 
scene  

Step 3 : Compute the connecting 
point pi on the face fi that minimize 

the distance  
𝑑 = ‖𝐫𝐁 − 𝐩𝐢‖ + ‖𝐫 − 𝐩𝐢‖ 

 

Step 8 : Output values  
dmin,imin ; pmin 

Step 4 : Is on of the 2 segments  (rB,pi) 
or (r,pi) crossing a building ?  

Step 0 : Initialize Nreflected lists 
dmin (k)= -1, imin (k)= -1, pmin(k)=[0,0,0]T

 

, k=1 

Yes 

No 

Step 5 : Check if it is the shortest path 
Is dmin(k)=-1 or  drefl< dmin(k) 

No

Step 6 : Update values  
dmin(k)= ddiff,imin (k)= i, pmin(k)= pi 

Yes 

Finished faces loop ? 

Step 1 : Repeat Nreflected times  

Step 7 : Remove face fimin from the list 
of the faces 
 k=k+1  

 
k= Nreflected  

k< N
reflected
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that these features capture the main sources of propagation errors, enabling the algorithm 
to infer the final TOA errors. 
Direct Path Features: 

 Direct_Nbuild (𝑁௨ௗ,): The number of buildings that intercept the direct path. For 
example, a value of 3 means there are 3 buildings on the direct path (indicating strong 
NLOS), whereas 0 indicates LOS propagation. 

 Direct_Din (𝐷ூே,): The distance traveled inside the buildings. When one or more 
buildings intercept the direct path (Direct_Nbuild > 0), this value corresponds to the 
distance (in meters) of the direct path inside the building. This feature provides 
information about the "strength" of the NLOS. For instance, a small value (e.g., 50 
cm) may indicate that the direct path crosses a building very close to one edge, 
suggesting the wave is weakly aƯected by this interaction. 

DiƯracted Path Features: 
 DiƯracted_ExtraDist (𝐷𝑖𝑓𝑓ா): The extra distance traveled by the diƯracted path 

relative to the direct path (i.e., the length of the diƯracted path minus the length of the 
direct path). This indicates the magnitude of the ranging error if the diƯracted path is 
detected instead of the direct path. 

 DiƯracted_Angle (𝐷𝑖𝑓𝑓ఈ): The angle between the two rays. This feature indicates the 
likelihood of the diƯracted path being received. For example, an angle close to 180 
degrees suggests the two rays almost form a straight line (weak diƯraction, with the 
diƯracted path close to the direct path), making it very likely to be received. 
Conversely, a smaller angle, like 100 degrees, indicates strong diƯraction, generally 
associated with significant signal attenuation, making it less likely to be received. 

Reflected Path Features: 
 Reflected_ExtraDist: The extra distance traveled by the reflected path relative to the 

direct path (i.e., the length of the reflected path minus the length of the direct path). 
This indicates the magnitude of the ranging error if the reflected path is detected 
instead of the direct path. 

 Reflected_Angle: The angle between the two rays. While this information may be less 
straightforward to interpret for reflection than for diƯraction, it can still be useful.  
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Figure 10 : Illustration of the compact representation of the map. 

 
B. Joint Features 
Joint features, which account for the simultaneous impact of multiple measurements over 
distinct links (as opposed to per-link features), can also be derived from the comparison of 
positioning solutions from diƯerent tested subsets. To address the challenge of testing all 
possible subset combinations, which is computationally prohibitive, our approach leverages 
the ability of machine learning to extract hidden interdependencies from only N such 
subsets. At each navigation epoch, we assume multiple (i.e., N) base station signals are 
received and a new matrix of positioning residuals M is constructed as follows. We generate 
N subsets Sn of N−1 TOAs, excluding one distinct TOA measurement (i.e., nth TOA) at a time 
: 𝑆 = {𝑇} ୀଵ..ே, 𝑖 ≠ 𝑛 . For each subset Sn, we calculate the corresponding solution 𝐫ො𝒏 using 
Eq.  2.4 with equal weights (i.e. 𝜎௦/ேைௌ = 1 ). Then, for each of the N resulting positions 
{𝐫ො𝟏, … , 𝐫ො𝑵 } we calculate the N TOA residuals: 

𝛿𝑇
 = 𝑇 − ℎ൫𝐫ො𝒏, 𝐫

൯, 𝑖 = 1. . 𝑁  Eq.  2.9 

The coeƯicient [𝑀], (i.e., row n, column i) of the residual matrix M is simply given by the 
corresponding residual 𝛿𝑇

. 
Each row n of the matrix provides residuals associated with the exclusion of the nth 
measurement. Although it assumes a single fault per subset (i.e., row), our intuition is that 
such a matrix can reveal the complex joint contributions of each base station to the 
positioning solution, while being fed as a single input to the neural network. 
C. Long-Short Term Memory Neural Network 
The overall input matrix of features fed to the neural network (NN) can be seen as a sequence 
of N pseudo-observations. At each observation, a single TOA measurement is excluded from 
computing the solution. By analyzing this sequence, the LSTM NN can exploit the 
correlations between the excluded measurement and the solution, identifying which 
measurement exclusions have the most significant impact on the positioning solution's 
quality. As a result, the NN will be capable of predicting weights that exclude multiple biased 
measurements by analyzing the sequence of pseudo-observations, set as joint features (see 
Section III-B). 

Distance inside 
buildings 

Extra distance & angle of 
the diffracted path 

Extra distance of the 
reflected path 

Map features 
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Additionally, the per-link features for the excluded measurements are concatenated for each 
pseudo-observation to provide more information about the excluded base stations (see 
Section III-A). 
In these types of problems, the LSTM NN architecture, a type of RNN [20], has the advantage 
of maintaining memory over multiple (possibly distant) pseudo time steps. Therefore, it is 
well-suited to exploit the correlations across the matrix rows in our case, even though we 
explicitly deal with a single epoch problem. Similar applications of the LSTM NN to other 
time-invariant problems have already been considered. For instance, in [21], LSTM NN was 
used to process data with long-range interdependence (i.e., using geometric properties of 
the trajectory for unconstrained handwriting recognition). Note that several other (more 
complex) neural network architectures were evaluated. For example, we considered a more 
complex architecture composed of two diƯerent concatenated neural networks. The first 
neural network processes only the residual matrix as input. Its output is concatenated with 
the additional per-link features and fed as inputs to the second fully-connected NN (FCNN). 
However, such architectures did not provide any significant improvement over the LSTM NN 
that only processes the residual matrix. For the sake of conciseness, such alternative 
architectures are not further discussed in this paper.  
 

2.2 Implementation phase 
 
The scope of LPWAN and the two proposed approaches rely on map information, signal 
redundancy, and large-scale propagation. Additionally, the AI-based approach requires a 
substantial database to train the neural network (NN). 
To evaluate these map-based approaches, CEA-Leti has deployed a city-wide LPWAN 
network using LoRa technology instead of NB-IoT. LoRa was chosen primarily for practical 
reasons : deploying 5G NB-IoT requires licensing and is significantly more costly and 
complex to implement. 
Unlike NB-IoT networks, LoRaWAN networks do not require any authorization, use cost-
eƯective hardware, and achieve comparable ranges to NB-IoT (a few kilometers in free 
space) with similar bandwidth (e.g., 180 kHz). Moreover, since the focus of the two 
approaches is on predicting signal quality based on map information, the radio waveform is 
secondary to propagation in our case. 
The main diƯerences between the two technologies that should be considered when 
interpreting the results are: 

 Carrier Frequency: LoRa operates at 868 MHz, while NB-IoT covers multiple bands 
at diƯerent frequencies (410 MHz to 7125 MHz). 

 MAC Protocol: LoRa networks use an unscheduled protocol, meaning 
transmissions from the UE are subject to significant collision risk and non-negligible 
packet losses. 

TOA Characterization 
Some first lab tests have been conducted to qualify the intrinsic TOA detection of LoRa 
waveforms with respect to NB-IoT. 
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For these measurements, commercial oƯ-the-shelf (COTS) telecom-grade gateways based 
on LoRaWAN technology were utilized. Specifically, Kerlink iBTS gateways were employed, 
which oƯer fine timestamp measurement capability. This capability, combined with a pulse-
per-second (PPS) signal generated by an integrated GNSS receiver, enables the generation 
of the required TOA metric. Unlike NB-IoT, which requires licensing and regulatory approvals, 
LoRaWAN does not require any authorization for deployment, making it simpler and less 
costly to implement. 
According to the LoRaWAN specifications, the DataRate (DR) parameter can be adjusted to 
optimize the trade-oƯ between data rate (high data rate, DR=5 / Maximum Coupling Loss 
(MCL)=144 dB) and coverage (low data rate, DR=0 / MCL=164 dB). This parameter controls 
the physical radio characteristics of LoRa and must be considered when characterizing the 
gateway performances. 
The laboratory setup for TOA performance characterization of the gateways across diƯerent 
DR values and Received Signal Strength (RSS) is detailed below. 
 

 
Figure 11 : Setup of laboratory tests  for TOA accuracy characterization 

A GNSS emulator was configured to send a static GNSS radio signal through a cable plant 
to two iBTS gateways A and B. The TDOA between the two gateways is defined as: 

∆𝑇 = 𝑇 − 𝑇 Eq.  
2.10 

Upon packet reception, both gateways should ideally provide the same TOA, resulting in a 
TDOA of zero. An adjustable RF attenuator was used to control the power received by these 
gateways. The attenuated signal received by the gateways was generated by a LoRaWAN 
device configured to continuously send packets, with adjustable DR values. 
Dedicated software was used to store the following radio metrics (TOA, Received Signal 
Strength Indicator (RSSI), and Signal-to-Noise Ratio (SNR)) for each gateway and DR value in 
a database. Calibration was performed to ensure both gateways provided consistent RSSI 
and SNR values across all RF attenuator settings. 
The TDOA values for DR=5 plotted against RSSI are shown in Figure 12. 
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Figure 12 : TDOA values versus RSSI for different DR=5 

It can be observed that for high RSS values (>-100 dBm), the standard deviation of TDOA 
(σTDOA) is lower than 20 ns, which corresponds to 6m of error, and is to be compared with a 
typical GNSS PPS jitter value. For lower RSS values (<-115 dBm), σTDOA increases to more than 
300 ns, with some values exceeding 1 µs, representing a maximal error of 300 meters in the 
worst case. These values are very similar to those reported in (Hu, Berg, Li, & Rusek, 2017), 
with 68% of errors below 25m and 99% below 300m for NB-IoT.  
 
LPWAN Deployment  
The infrastructure comprises six gateways installed around the city of Grenoble through 
collaboration with several partners. Due to initial site unavailability, some gateways (#4, #5, 
and #6, see Table 1) were temporarily installed on the roof of a building in the CEA premises 
named "B2I." This temporary location was very close to gateway #1 (approximately 50 meters 
away), resulting in poor Geometric Dilution of Precision (GDOP) until they were recently 
moved to their final locations (#7, #8, and #9).  
Taking advantage of Grenoble's mountainous surroundings, some gateways were installed 
at high altitudes for optimal coverage. Notably, gateways #2 and #3 were installed on the 
roofs of cable car arrival stations at altitudes of 485 meters and 2259 meters, respectively, 
providing extensive radio coverage. 
 

# Name Alt. (m) Duration #packets Efficency Coverage 
1 BCC @CEA 250 17 months 397 330 61% 58% 
2 Bastille 493 17 months 453 448 70% 73% 
3 Chamrousse 2259 17 months 323 745  50% 61% 
4 B2I-testA @CEA 236 13 months 188 385  64% 27% 
5 B2I-testB @CEA 236 2 months 26 869  N.A. N.A. 
6 B2I-testC @CEA 236 2 months 19 610  N.A. N.A 
7 Pont-De-Claix 291 6 months 77 112  21% 22% 
8 Vouillants 559 6 months 182 223  51% 51% 
9 Alpexpo 232 6 months 141 578  40% 40%    

TOTAL 1 810 300 
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Table 1 : statisics of deployment 

Approximately ten tags were distributed to volunteers for data collection during their daily 
travels over a period of just over one year. These travels included car, bicycle, and pedestrian 
movements. The devices embedded GNSS receivers to measure reference positions, which 
were transmitted along with other data. Each sent packet could be received by one or 
multiple gateways, which measured various metrics such as tag identifier, Time of Arrival 
(TOA), Received Signal Strength (RSS), Signal to Noise Ratio (SNR), frequency, etc. These 
data were recorded in a centralized database for post-processing. 
During the ongoing test campaign, a total of 1,810,300  packets have been recorded in the 
database, nearly three times more than comparable studies (Aernouts, Berkvens, 
Vlaenderen, & Weyn, 2018). 
The data collection zone is confined to an area of 10 km by 15 km, centered on the CEA, 
which is situated near downtown. Each received packet is assigned to a 10 m by 10 m cell 
based on its GNSS position. Consequently, the "map" theoretically consists of 1.6 million 
cells, but only those cells that receive at least one measurement are fully initialized. After 17 
months of data collection, this represents a total of approximately 40,000 cells. 
 
Due to GNSS inaccuracies, which can be greater than the cell size, especially in urban 
environments, a map-matching process is performed before assigning a packet to a cell. 
This process utilizes the road network from the OpenStreetMap (OSM) database, pre-
allocating cells whose locations match specific types of "ways" (as defined by OSM), 
including streets, highways, hiking trails, etc. When a new packet is received, it is assigned 
to the closest pre-allocated cell within a 50 m range of its GNSS position. If no such cell is 
found, the packet is assigned to the nearest cell in the grid. 
This approach ensures higher accuracy in mapping and better representation of the actual 
packet distribution across the area. By leveraging OSM data, the system can account for 
various types of terrain and pathways, providing a more detailed and realistic depiction of 
the packet journey. This method is particularly eƯective in urban areas, where GNSS signals 
can be obstructed by buildings, resulting in significant positional errors. 
Furthermore, the 50 m range for cell assignment is carefully chosen to balance the trade-oƯ 
between accuracy and computational eƯiciency. A smaller range could lead to many 
packets being unassigned due to GNSS errors, while a larger range could increase the 
likelihood of incorrect cell assignment, thus compromising data integrity. The pre-allocation 
of cells based on the road network also facilitates better data management and retrieval, as 
the packets are more likely to be associated with relevant and significant locations. 
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Figure 13: Example of an RSS map for the Bastille gateway. Each dot represents a 10x10m cell where at least one packet 
has been received. The color indicates the RSS level. 

Overall, this meticulous approach to packet assignment enhances the quality of the 
collected data, making it more reliable for subsequent analysis. 
Table 1 shows that the number of packets received varies significantly among gateways, 
primarily due to their diƯering activity periods. The coverage corresponds to the ratio 
between the number of cells for which a given gateway has received at least one packet with 
respect to the total number of cells for which a packet has been received by any gateway. 
The eƯiciency is simply the ratio between the number of packets received with respect to the 
number of packets transmitted. It is worth noting that the eƯiciency is relatively low (from 
21% to 70%) even for transmissions in the range of a gateway, explained by a significant level 
of collisions due to the unscheduled nature of LoRaWAN protocol. From the positioning 
perspective, the main consequence of this issue is that the number of transmissions with at 
least 3 successful receptions required to compute a position becomes very low. For 
instance, assuming an average eƯiciency of 60%, the probability that a packet is 
successfully received by 3 given beacons is only 21%.  
Beyond the laboratory characterization of TOA accuracy, this deployment has allowed us to 
measure empirical TOA accuracy, marginalized with respect to propagation conditions. In 
Figure 14, solid lines correspond to LOS and dashed lines to NLOS propagation. These 
results show two diƯerent behaviors depending on whether the gateway is installed at high 
elevation (e.g., Bastille, Chamrousse) or low elevation (e.g., CEA BCC, CEA B2I). For high 
elevation gateways, there are no significant diƯerences between LOS and NLOS 
propagation.  As explained in §2.1.2, this can be attributed to the fact that under NLOS 
conditions, once the signal reaches the "top of the buildings," it can propagate freely to the 
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high elevation gateway with minimal extra path. Conversely, for low elevation gateways, 
several obstacles may block signal propagation, causing multiple reflections before 
reaching the destination, resulting in a significant extra path. 
Based on these results, the standard deviation values for the “single-ray approach” (see 
§2.1.1) have been set to 𝜎ைௌ = 230𝑚 and  𝜎ேைௌ = 1000𝑚. It is notable that the eƯective 
standard deviation values extracted from real-world tests are much higher than those 
measured during lab tests. This emphasizes the preponderance of propagation conditions 
over the physical layer in determining localization accuracy.  
 

 
Figure 14: Empirical CDF of TOA errors 

 

2.3 Testing phase  
 

2.3.1 Results for the Single-ray approach  
The single-ray approach has been tested under real conditions using the collected 
measurements from the deployed LPWAN. Due to the technology used for this deployment 
and data collection, the algorithm was not integrated into the LMF but tested directly using 
MATLAB post-processing. Out of all the received packets, only a limited number (i.e., 9,925) 
met the requirements for positioning, which necessitates at least three successful 
receptions. This limitation is primarily due to the high level of collision inherent to the used 
protocol. 
Figure 15 shows the obtained positioning CDF using this algorithm (in blue) along with the 
corresponding Cramér-Rao Lower Bound (CRLB), which represents the theoretical 
performance bound. The positioning accuracy achieved with the algorithm is approximately 
2360m, with a theoretical limit of about 510m for 68% of the measurements. 
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These poor average results are mainly due to the limited robustness of this algorithm. The 
average errors of NLOS measurements obscure large variations in these errors. When the 
GDOP is poor, large errors can prevent the algorithm from converging properly, resulting in 
exaggerated discrepancies from theoretical limits. This highlights the need for more robust 
algorithms capable of handling the variability and challenges posed by real-world 
propagation conditions. 

  
Figure 15 : CDF of the position error using the single-ray approach 

2.3.2       Results for the Artificial Intelligence approach 
The AI approach requires a significant amount of data for training, validation, and testing. 
However, the database collected using the LPWAN deployment, despite its large number of 
measurements, does not meet these requirements. As previously explained, only a limited 
portion of the collected data is suitable for positioning, restricting the amount of usable data 
for the AI approach. 
To overcome this issue, the algorithm was initially trained on an available GNSS database 
comprising approximately 12 million measurements. Although GNSS significantly diƯers 
from 5G signals (e.g., number of TOA per epoch, TOA accuracy, non-terrestrial propagation), 
the main concepts of the approach still apply (e.g., unknown user clock but synchronized 
network, building obstructions). The idea behind this methodology is to perform an initial 
training based on this GNSS database to develop a preliminary version of the algorithm. In a 
second step, the neural network is optimized for 5G signals using transfer learning. This two-
step approach minimizes the amount of 5G data required for full learning. 
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The results obtained from the first step are illustrated in Figure 16 which shows the CDF of 
the errors using the CEA approach (AI-based) compared to a state-of-the-art (SOTA) 
(Combettes & Villien, 2021) algorithm. 

 
Figure 16 : CDF of errors using AI based approach and the GNSS database 

 
Positioning errors are approximately 30m, a significant improvement compared to those 
obtained using the LPWA network dataset, primarily due to the inherent accuracy of GNSS 
measurements. However, when compared to a reference algorithm from the state-of-the-art 
(SOTA) (Combettes & Villien, 2021), there is a notable 23% improvement attributed to the 
algorithm itself, particularly in its utilization of map information. This initial finding 
underscores the promising potential of this approach. 
As of the completion of this deliverable, optimization of the algorithm for the LPWAN dataset 
is ongoing, and specific results are not yet available. 
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3 Positioning in 5G NR using UL-TDoA 
 
The performed work described in this chapter was executed by the Four partners Eurecom, 
Firecell, TU-Dresden, and Fraunhofer IIS. 
 

3.1 Overview 

In this project, we aim to implement 3GPP NR Rel 15 and Rel 16 functionality for 
positioning/localization in the OpenAirInterface (OAI) radio access network (RAN) as well as 
the development of advanced positioning algorithms that are especially suited for indoor 
environments.  The main focus of the project is to have an end-to-end uplink time diƯerence 
of arrival (UL-TDoA) positioning system based on Rel 15 Sounding Reference Signal (SRS) 
with a localization accuracy of less than 1m in FR1 (sub 6 GHz).  The UL-TDoA positioning 
method [R3.1, Section 8.13] makes use of the Uplink Relative Time of Arrival (UL-RToA) and 
optionally Uplink SRS Received Power (UL-SRS-RSRP) at multiple reception points (RPs) of 
uplink signals transmitted from UE. The RPs measure the UL-RToA and optionally UL-SRS-
RSRP of the received signals using assistance data received from the positioning server, and 
the resulting measurements are used along with other configuration information to estimate 
the location of the UE. The measurements will be provided by the RAN through the NR 
Positioning Protocol Annex (NRPPa) protocol to the Location Management Function (LMF), 
which will run the localization algorithms. The simplified network architecture for 5G 
positioning is depicted in Figure 3.1. 

 
Figure 3.1: Network architecture for 5G positioning 

 
The LTE Positioning Protocol (LPP) covers signaling between UE, the Location Management 
Function (LMF), and the location server, e.g. Evolved Serving Mobile Location Center (E-
SMLC). The Radio Resource Control (RRC) protocol transports the LPP messages over the 
NR-Uu interface, the NGAP protocol over the NG-C interface, and the HTTP/2 protocol over 
the NLs interface. The NRPPa defines procedures to transfer positioning-related information 
between NG-RAN nodes and LMF. It is transported using the NGAP protocol over the NG-C 
interface and the HTTP/2 protocol over the NLs interface. The detailed operation of the UL-
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TDoA positioning method is described in [R3.1, Section 8.13].  A summary of the exchange 
of messages at each step of the UL-TDoA positioning procedure [R3.1, Section 8.13.3.4] is 
shown below.  
 

 
Figure 3.2: UL-TDoA Positioning Procedure (3GPP) [1, 8.13.3.4]. 

 

 Step 0: The LMF may use the procedure in [R3.1, Figure 8.13.3.2.1-2] to obtain the 
TRP information required for UL-TDOA positioning.  

 Step 1: The LMF may request the positioning capabilities of the target device using 
the LPP Capability Transfer procedure as described in [R3.1, clause 8.13.3.1].  

 Step 2: The LMF sends an NRPPa POSITIONING INFORMATION REQUEST message 
to the serving gNB to request UL-SRS configuration information for the target device 
as described in [R3.1, Figure 8.13.3.2.1-1].  
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 Step 3: The serving gNB determines the resources available for UL-SRS and 
configures the target device with the UL SRS resource sets at step 3a.  

 Step 4: The serving gNB provides the UL information to the LMF in a NRPPa 
POSITIONING INFORMATION RESPONSE message.  

 Step 5a: The LMF may request activation of UE SRS transmission and sends a 
NRPPa SRS Activation Request message to the serving gNB of the target device as 
described in [R3.1, subclause 8.13.3.3a].  

 Step 5b: The gNB then activates the UL-SRS transmission. The target device begins 
the UL-SRS transmission according to the time domain behavior of UL SRS resource 
configuration. 

 Step 6: The LMF provides the UL-SRS configuration to the selected gNBs in a NRPPa 
MEASUREMENT REQUEST message as described in [R3.1, clause 8.13.3.3]. The 
message includes all information required to enable the gNBs/TRPs to perform the 
UL measurements. 

 Step 7: Each gNB configured at step 6 measures the UL-SRS transmissions from the 
target device. 

 Step 8: Each gNB reports the UL-SRS measurements to the LMF in a NRPPa 
Measurement Response message as described in [R3.1, clause 8.13.3.3].          

Limitation of OAI source code for 5G RAN and 5G Core (beginning of project) 

LMF  

 LMF Procedures (TS 29.572) 
 NRPPa Functionalities (TS 38.455) 
 NRPPa PDU Transfer protocol between AMF/LMF ((TS 29.518 )  

AMF  

 NRPPa PDU Transfer protocol between AMF/LMF (TS 29.518 ) 
 NRPPa PDU Transfer protocol between AMF/gNB (TS 38.413)  

RAN  

 NRPPa Functionalities (TS 38.455) 
 NRPPa PDU Transfer protocol between AMF/gNB (TS 38.413)  

 

Given the limitation of OAI source code for 5G RAN and 5G Core, the project is divided into 
the following tasks to achieve its main goals. 
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3.2 Implementation  
In this task, we are extending the current version of OpenAirInterface gNB as well as 5G core 
with all the necessary functionality so that it can support the NRPPa protocol. Currently, OAI 
is capable of configuring Rel 15 SRS (UL), channel estimation, and TDoA estimation at 
multiple gNBs. We are implementing the necessary messages as well as procedures to build 
the support of 3GPP UL-TDoA positioning [R3.1, 8.13] functionality in OAI. 
 
The partners working in collaboration on the OAI development are Eurecom, Firecell, and TU 
Dresden. 
 
In this section, we summarize the minimum required functionalities (protocols and 
algorithms) that are necessary to enable the 3GPP-based UL-TDoA positioning [R3.1, 
Section 8.13] in OAI and the current status of their development. Figure 3.2 describes the 
summary of the messages exchanged among several network entities and Figure 3.3 
describes the protocol layering for the transfer of NRPPa PDU between gNB and LMF. 
 
 

 
 

Figure 3.3: Protocol layering for the transfer of NRPPa PDU between gNB and LMF 
 
 
From Figures 3.2 and 3.3, we can get the following summary of key functionalities that are 
necessary to enable the 3GPP-based UL-TDoA positioning in OAI. 
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3.2.1 Required at gNB 
At the beginning of the project, OAI gNB does not have any NRPPa functionalities.  To enable 
the 3GPP-based UL-TDoA positioning in OAI gNB, Eurecom and Firecell collaborated and 
implemented the following functionalities. 

3.2.1.1 NRPPa Functionalities (TS 38.455) 
 

List of NRPPa functionalities implemented in OAI gNB 

Function (9.1 of TS 38.455) Elementary Procedure(s) 

Positioning Information Transfer 
Status: 1st Version done and Tested 

Positioning Information Exchange 
Positioning Information Request 
Positioning Information Response 
Positioning Information Failure 

Positioning Information Update 
Positioning Activation 

Positioning Activation Request 
Positioning Activation Response 
Positioning Activation Failure 

Positioning Deactivation 

TRP Information Transfer 
Status: 1st Version done and Tested 

TRP Information Exchange 
TRP Information Request 
TRP Information Response 
TRP Information Failure 

Measurement Information Transfer 
Status: 1st Version done and Tested 

Measurement 
Measurement Request 
Measurement Response 
Measurement Failure 

Measurement Update 
Measurement Report 
Measurement Abort 
Measurement Failure Indication 

 
In 1st version, the end-to-end protocol testing with one-gNB and one-UE has been 
conducted successfully both in simulated setup as well as on Eurecom/Firecell’s ORAN 
Positioning Testbed at Eurecom (refer to [R3.5] for more detail). 
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3.2.1.2 NRPPa Transport Procedures 8.10 of TS 38.413 
Status: done and tested 

NRPPa PDU Transfer protocol between AMF/gNB (TS 38.413) 

 NGAP Uplink UE Associated NRPPa Transport 
 NGAP Uplink Non-UE Associated NRPPa Transport 
 NGAP Downlink UE Associated NRPPa Transport 
 NGAP Downlink Non-UE Associated NRPPa Transport 

 

3.2.2 Required at AMF 

Following protocols are required to transport NRPPA PDUs between LMF to gNB 
through AMF. These protocols have been implemented by the OAI core network team.    
 

3.2.2.1 NRPPa Transport Procedures 8.10 of TS 38.413 
Status: done and tested 
 

NRPPa PDU Transfer protocol between AMF/gNB (TS 38.413) 

 NGAP Uplink UE Associated NRPPa Transport 
 NGAP Uplink Non-UE Associated NRPPa Transport 
 NGAP Downlink UE Associated NRPPa Transport 
 NGAP Downlink Non-UE Associated NRPPa Transport 

 

3.2.2.2 NRPPa PDU Transfer protocol between AMF/LMF (TS 29.518) 
Status: done and tested 

 Development of NRPPa PDU Transfer protocol between AMF and gNB 
 

3.2.3 Required at LMF 
At the beginning of the project, the OAI 5G core did not have any LMF.  To enable the 3GPP-
based UL-TDoA positioning in OAI, TU Dresden has implemented the following 
functionalities. 
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3.2.3.1 LMF Procedures (TS 29.572) 

 DetermineLocation: Retrieve UE Location (5.2.2.2.2 TS 29.572) (Status: done and 
tested) 

 CancelLocation: Cancel Periodic or Triggered Location (5.2.2.4.2 TS 29.572) 

3.2.3.2 NRPPa Functionalities (TS 38.455) 
 

List of NRPPa functionalities implemented in OAI LMF 

Function (9.1 of TS 38.455) Elementary Procedure(s) 

Positioning Information Transfer 
Status: 1st Version done and Tested 

Positioning Information Exchange 
Positioning Information Request 
Positioning Information Response 
Positioning Information Failure 

Positioning Information Update (not 
done) 
Positioning Activation 

Positioning Activation Request 
Positioning Activation Response 
Positioning Activation Failure 

Positioning Deactivation 

TRP Information Transfer 
Status: 1st Version done and Tested 

TRP Information Exchange 
TRP Information Request 
TRP Information Response 
TRP Information Failure 

Measurement Information Transfer 
Status: 1st Version done and Tested 

Measurement 
Measurement Request 
Measurement Response 
Measurement Failure 

Measurement Update (not done) 
Measurement Report (not done) 
Measurement Abort (not done) 
Measurement Failure Indication (not 
done) 

 

3.2.3.3 NRPPa PDU Transfer protocol between AMF/LMF (TS 29.518) 
Status: done and tested 
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3.2.4 LMF implementation 
During the system design phase, Uplink-TDOA (UL-TDOA) was selected as the localization 
method to be implemented. TU Dresden was responsible to subcontract CampusGenius 
GmbH with the development of the LMF for the OAI Core. This contract was signed during 
the year 2022. CampusGenius started the implementation of the LMF for the OAI Core 
afterwards. CampusGenius is a commercial company developing 5G core technology; 
therefore, familiar with 5G technology and capable of starting right away. 
 
As the implementation began at the end of the year 2022 in the OAI development branch the 
University of Hydarabad had provided a LMF branch. During the investigation of this branch, 
it became apparent that only 1 message had been only rudimentary implemented; thus, the 
development of the agreed subset of the LMF would be required. This Implementation was 
done within the project starting December 2022. 
 
NRPPa PDU transfer protocol between AMF/LMF (NAMF) has been implemented from LMF 
side in cooperation with the AMF team.  
 
Additionally, to the messages and internal logic of the LMF, the interface to an external 
algorithm for position calculation was developed and implemented. This enables any 
algorithms to be connected to the LMF and utilize the UL-TDoA information provided by the 
5G-System to the LMF. In 5G-Opera this algorithm is provided by the Fraunhofer IIS and has 
been implemented, verified and tested. 
 
During the development a close cooperation with the AMF and gNB team from Eurecom was 
established to implement and test the resulting LMF. Those tests have been positive. 
 

 
Figure 3.4: Messages Exchange flow between RAN, AMF, LMF and Positioning algorithm. 
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3.2.5 External API to Initiate Localization 
The Determine-Location API in LMF allows a consumer NF (or any External API) to request 
the location information (geodetic location and, optionally, civic location) for a target UE or 
to activate periodic or triggered deferred location for a target UE. As shown in Figure 3.5 
(Figure 5.2.2.2.2-1 of [R3.2]) to initiate the location procedure, the external API (which can be 
an advanced API or a simple one-line command) sends the HTTP post request to determine 
location API, where the request contains a data structure of type InputData (Section 
6.1.6.2.2 of [R3.2]).  

 
Figure 3.5: Determine Location Request Procedure 

 
We have developed a Python-based external API as well as a simple single command that 
sends http post request to access the determine-location APIof LMF. 
 

3.3 Positioning Algorithms 

3.3.1 Fraunhofer IIS 
Fraunhofer IIS, as an experienced specialist in the field of positioning, proposed the 
localization method “Uplink-TDOA” (UL-TDOA) for implementation. This was because of 
availability of Reference Signals (namely SRS) already send from commercial 5G NR phones 
(starting with Release 15). The therefore needed position calculation algorithms for time-of-
flight-based positioning to be placed in the LMF of the 5G-Core are implemented by 
Fraunhofer IIS, too. 
 
The positioning algorithm was created in project year 2023. A so-called "single shot" 
approach was chosen for this, which can determine a position result based on just one 
measurement data set with no need for temporal memory or filtering. This makes it easy to 
integrate into the 5G-Core because it is basically stateless (i.e. has no memory) due to its 
design as a web service. 
 
Due to legal restrictions, Fraunhofer IIS is currently unable to publish software into Gitlab for 
the OAI 5G-Core. In order to make the positioning algorithm available to our project partners, 
provision via Fraunhofer's cloud environment was selected and implemented as a temporal 
workaround. Figure 3.6 shows the implemented solution. 
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The partners received the "access client" software, providing access to the cloud service. 
Partners can use the client to transmit measured time-of-arrival (TOA) values to the server 
using the "TOA transmitter" module. The position result can then be calculated on the cloud 
server and is send back to the "positions-receiver" of the "access client". 
 
Furthermore, a "TOA simulator" was developed and added as a module to the "access 
client". It simulates an infinite circular movement of a UE and determines the theoretically 
resulting TOA measurement values from the configured "anchor positions" (AP 1 ... AP 4). 
The 5G radio units will be at those “anchor positions” in a 5G communication system with 
real hardware. 

  
Figure 3.6:  Block diagram of the "TDOA positioning" (in the Cloud Platform, on the right) in 

interaction with the "Access Client" (for communication with the Cloud Server and for 
generating synthetic measured values, on the left). 

 

3.3.2  Eurecom 

 Currently integrated on LMF: pos_est(TDOA,TRP_INFO) 
o Linear and non-linear methods: LLS, NLS 
o Particle Swarm Optimization: PSO 

 In progress: 
o Supervised Learning: Fingerprinting 
o Unsupervised Learning: Channel Charting 

Position estimation happens on LMF on the OAI 5G Core Network (OAI CN5G). Currently the 
statistical solutions for position estimation are implemented in C as functions that receive 
two inputs. First an array of TDoAs and secondly, the relative cartesian coordinates of all 
TRPs. Following the same format of header file (.h) makes it easy for other partners to 
contribute to the position estimation. 
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On the other hand, machine learning methods are dependent on some external libraries 
such as PyTorch or TensorFlow. Therefore, it is more convenient to use their original 
implementations in Python on LMF. 
 

3.4  Integration and testing 

3.4.1 testing with gNB and rfsimulator 
At the beginning of this project, the OAI code does not support the functionalities of LMF and 
localization-related protocols. Therefore, we adopted several simplifications and developed 
our first prototype of the system to allow a quick simulation (with rfsimulator) of a simple 
positioning using UL TDoA based on SRS. The proposed prototype shown in Figure 3.7 aims 
to replicate as much as possible the actual functionalities with several simplifications, such 
as a simplified channel model (AWGN), a simplified LMF (Matlab), and an MQTT-based 
interface (imitating NRPPa) to connect LMF with the gNB directly. The prototype can be used 
to present the quasi-real-time OAI Rfsimulator-based positioning demo. 
 

         
   

Figure 3.7: Proposed Rfsimulator-Based Simplified Positioning Procedure. 
 
 

3.4.2 Testing gNB with USRP 
In this task, we extend the positioning prototype setting proposed for Task 0 by replacing the 
Rfsimulator with commercial radios, where we use the Quectel module [R3.3] as UE and 
USRPs [R3.4] as gNB. Our proposed USRP-based prototype shown in Figure 3.8 allows us to 
test the UL TDoA-based user positioning without the functionalities of LMF and localization-
related protocols (NRPPa/LPP) in OAI. 
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Figure 3.8: Proposed USRP-Based Simplified Positioning Procedure. 

 

3.4.3 testing end-to-end with Firecell RU 
The detailed documentation on testing can be found here: https://gitlab.eurecom.fr/geo-
5g/docs.git.    

3.4.4 Integrating Fraunhofer PaaS to LMF  
Adding dependencies and external libraries for AMQP protocol to send TDOAs to Fraunhofer 
PaaS server and get position estimations in return.  
Last commits are pushed to here: 
 
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-lmf/-/tree/PaaS?ref_type=heads 
https://gitlab.eurecom.fr/oai/cn5g/oai-cn5g-lmf/-/commits/pos_est?ref_type=heads 
 
The performance test with multiple gNBs in rfsim and Firecell RU is in progress. 
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4 Novel RTT estimation for 5G NR 
 
This work proposes a Novel RTT estimation method that coherently combines multiple 
Uplink (UL) Sounding reference signal (SRS) measurements. Compared to the previous 
works, the inability to exploit multiple UL SRS measurements coherently in the RTT 
estimation stems from a) inherent timing control loops in 5G NR and b) clock drift. The timing 
control loops in 5G NR include UL and DL timing control. UL timing control is a continuous 
process in which gNB sends TA commands to the UE to adjust its UL transmission timing. 
This procedure is crucial for maintaining UL frame alignment with the gNB. On the other 
hand, in DL timing control, the UE experiences DL reception timing drift due to clock drift, 
and it corrects this drift based on DL reference signals and is implementation specific. These 
timing control loops and the clock drift lead to the variability in delay estimated from SRS 
measurements obtained in diƯerent time slots. Therefore, even in a scenario where the UE 
is static and the gNB has access to multiple SRS measurements, they cannot be used jointly 
to estimate the RTT. However, it is well known that multiple measurements improve the 
estimation performance in low signal-to-noise ratio (SNR) conditions. 
  
In this work, we propose a novel framework to estimate the RTT based on multiple coherent 
SRS measurements in 5G NR. This approach tremendously improves the accuracy of RTT 
estimation in low SNR regimes. To the best of our knowledge, accurate RTT estimation 
without the need for dedicated DL PRS resources is not possible in 5G NR. 
Specifically, the contributions of this work are:  

 We propose a simple enhancement to the 5G NR signaling scheme that can obtain a 
sequence of similar UL SRS measurements. 

 A matched-filter solution is proposed to estimate the RTT jointly from the collected 
measurements. 

 The proposed method can obtain the RTT even when the 5G UE is in a radio resource 
control (RRC) inactive state. 

 The complete solution is experimentally validated with a real-world 5G testbed 
based on the OpenAirInterface. 

The outcomes of the work are reference in [R 4.1],[R4.2],[R 4.3]. 
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The proposed algorithm in [R 4.1],[R4.2] is validated in real-time using openairinterface in 
an anechoic chamber as shown in the figure below. The datasets are published in [R 4.3]. 
 

 
The CDF plots of the accuracy of range estimation at High and Low SNR combining multiple 
measurements (M) are shown below, 
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5 Channel Charting for 5G NR 
 
While previously measurements such as ToA and TDoA were used to calculate the 
position of the UE, Channel State Information (CSI) can offer more detailed channel 
properties to directly estimate the position from using supervised and unsupervised 
Machine Learning solutions. Supervised learning, especially fingerprinting (FP) methods, 
uses a pre-existing database of signal characteristics like CSI or MPC from known 
locations to train a model for predicting a device's location. This method is effective in 
stable environments. Unsupervised learning, however, doesn't need a pre-labeled 
dataset and directly maps data to an objective function, making it suitable for dynamic 
environments where maintaining a labeled dataset is impractical, allowing it to adapt to 
changes over time. 
 
Although CSI offers a detailed view of wireless signal propagation, including 
environmental effects like scattering, fading, and reflection, its high-dimensional data 
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makes analysis and positioning challenging. Channel Charting (CC) addresses this by 
creating a map of the wireless medium using CSI, allowing for precise localization and 
tracking of devices in complex environments. 
Channel charting, an application of manifold learning, is crucial for interpreting CSI data. 
Manifold learning, a non-linear dimensionality reduction technique, uncovers low-
dimensional structures within high-dimensional CSI datasets. This enhances the 
understanding of signal propagation, leading to more precise and efficient perceptions of 
wireless signal interactions with their environment. 
Despite recent advancements in self-supervised CC using deep metric learning, these 
methods still fall short of the precision achieved by supervised or traditional triangulation 
methods, even in Line-of-Sight (LoS) conditions. To address this, we developed a novel 
channel charting algorithm that leverages neural networks and data fusion for accurate 
user localization. Our specific contributions are as follows: 

 We developed a neural network-based channel charting function that accurately 
localizes users while preserving global geometry. 

 We improved localization accuracy by incorporating data fusion with depth data 
during training. 

 Our self-supervised algorithm utilizes nearby Transmission Reception Points 
(TRPs) and depth data during training without needing labeled data. 

 Our method achieves sub-meter localization accuracy with two LoS TRPs 90% of 
the time, outperforming state-of-the-art and traditional triangulation methods. 

Given the CIR dataset, it is possible to find a mapping function that transforms the CIR 
matrix from multiple antenna measurements to a lower dimension as a proxy for user 
locations, known as pseudo-positions. Deep neural networks are well-suited for 
estimating the complex and non-linear mapping function. This way, we build a channel 
chart algorithm upon a bilateration loss function and by capitalizing on ToA measurements 
and the location of the TRPs. We extend this method further by incorporating laser 
scanner data to improve the accuracy of localization. Note that the TRPs locations and 
laser scanner data are only required during the training phase. Moreover, our approach 
is self-unsupervised and will provide a global scale representation of the user’s location 
in the global coordinate frame very close to the ground truth as opposed to the pseudo-
position of the user. 

The table below compares the positioning performance of Classical PSO (min. 3 TRPs) 
method with different state of the art CC approaches (min. 2 TRPs).   

Siamese network uses pairs of CSI measurements and their corresponding Euclidean 
distance as a dissimilarity metric.  

Triplets network encodes triplets of CSI into a 2-D latent space and similar to Siamese, 
is a semi-supervised and utilizes some labeled data. 

Triplets+bilateration Employs a self-supervised approach using known TRPs locations 
and their received power in a combined triplet and bilateration loss function. 
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And finally, our approach is a bilateration and laser data fusion shows more accuracy 
from CSI measurements of only 2 LoS TRPs.  

 

 

 

 
Global Scale Self-Supervised Channel CharƟng with Sensor Fusion 
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6 Power Delay Profile based Ranging for 5G NR 
 
The orthogonal frequency division multiplexing (OFDM) is widely used in standards such as 
IEEE 802.11, long-term evolution (LTE), and 5G NR. Consequently, there is increasing 
interest in leveraging wireless signals for distance estimation and accurate user positioning, 
especially in environments where GPS signals may be unreliable, such as indoor or complex 
settings. 
 
We propose a novel Power Delay Profile (PDP)-based ranging method that requires no 
additional hardware or estimation information. This method exploits the evolution of 
attenuation over the entire delay spread and captures attenuation at multiple delays 
(distances), allowing it to account for the curvature of the PDP envelope (the distance-
dependent attenuation function). While attenuation is sensitive to calibration errors in 
synchronization and Tx/Rx gain estimation, the curvature remains insensitive to such oƯsets. 
As demonstrated in our previous work [R6.1], PDP-based ranging achieves more precise 
range estimation compared to RSSI-based methods. However, estimating the PDP envelope 
from a single channel realization is more challenging than deriving a single RSSI value, as it 
is sensitive to fast fading, shadowing, scatterer spread, and the fact that the PDP samples 
its envelope at only a subset of multipath delays. To address this, we exploit the specular 
part of the channel and focus on the attenuations of the MPC, hence PDP. Another challenge 
is accurately modeling shadowing in combination with distance-dependent attenuation. 
 
One widely accepted statistical model for indoor multipath propagation is the Saleh-
Valenzuela model, which considers reflection, diƯraction, and scattering caused by indoor 
structures. However, this model may not accurately represent channel behavior in outdoor 
or wide-area environments, as it does not account for wide-area path loss, shadowing, and 
other outdoor-specific phenomena. For outdoor or wide-area channel behavior, empirical 
models based on extensive outdoor measurements, such as the Okumura-Hata model or 
some 3GPP models, are commonly used. Selecting the appropriate statistical model for 
validation is crucial to ensure its applicability across most cases and confirm that the 
algorithm used for this model can be extrapolated to others. Compared to alternative 
models like Rayleigh, Rician, or log-normal distributions, the Nakagami-m distribution 
demonstrated superior versatility and accuracy in fitting a wide range of experimental data. 
This is due to its ability to accommodate the superposition of primary and clutter signals 
resulting from diƯuse reflections within a single path, making it more suitable than the 
Rayleigh distribution. Nakagami-m and Rician distribution models behave similarly near 
their mean value. However, the Nakagami-m fading model diƯers from the Rayleigh fading 
model in that obtaining an analytic form for the likelihood function is impractical due to 
intractable integrals. Therefore, we concluded that the Nakagami-m decay model is well-
suited for validating the feasibility of our PDP-based ranging approach. 
 
Considering the uniform distribution of the phase varying from 0 to 2π for each MPC, we 
established the relationship between the parameters of the Nakagami-m distribution and 
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the propagation distance to enable distance estimation. The shape parameter m of the 
Nakagami-m distribution is closely associated with the environment, while the scale 
parameter represents the average attenuation power intensity, directly linked to the 
propagation distance. When the received data contains suƯicient information about the 
attenuation of diƯerent paths, we can estimate the distance based on these measurements. 
While many studies have explored the use of MPCs for ranging/localization estimation, to 
our knowledge, no prior research has focused on directly estimating the propagation 
distance of the LoS path by assuming that both the LoS and NLoS paths of PDP conform to 
specific fading distributions. 
 
In formulating the range estimation problem, we found that traditional estimation 
approaches were inadequate. To overcome this, we proposed the Expectation Maximization 
(EM) -Revisited Vector Approximate Message Passing (ReVAMP) algorithm. The EM algorithm 
handles estimation problems with hidden variables. When the analytic formula for the 
posterior probability density function (pdf) is unavailable within the EM algorithm, we 
introduce the ReVAMP inference algorithm to approximate the posterior distribution. 
Compared to the original VAMP, which provides only averaged variances, ReVAMP can yield 
distinct variances. In ReVAMP, each marginal extrinsic distribution is approximated using a 
complex Gaussian distribution through approximation belief propagation. Simulations verify 
the theoretical feasibility of our PDP-based ranging and validate the eƯectiveness of our EM-
ReVAMP algorithm. 
 
However, we must acknowledge that we have not yet collected experimental data to validate 
the feasibility of our PDP-based ranging, which may lead readers to doubt the generalizability 
of the Nakagami-m model in other scenarios. Fortunately, the versatility of the EM-ReVAMP 
algorithm enables our PDP-based ranging to extend to other statistical models besides the 
Nakagami-m model. Even when transitioning to other fading statistical models, EM-ReVAMP 
can function with minor adjustments. While we have theoretically validated the superiority 
of our PDP-based ranging approach over the RSSI approach in our previous work [R6.1], we 
predict that our approach may not be as precise as state-of-the-art methods requiring 
additional hardware. The key contributions are following: 

 Proposal of a novel PDP-based ranging method requiring no-extra hardware, which 
focuses on building statistical attenuation models for each MPC in PDP.  

 Introduction of the EM-ReVAMP algorithm as a reliable, practical and robust solution 
for our PDP-based range approach.  

 Verification of the superior accuracy and robustness of proposed PDP-based 
ranging method and EM-reVAMP algorithm with selecting Nakagami-m statistical 
model through comprehensive simulations. 

 
The outcomes of the work are referenced in [R6.1]. The proposed algorithm in [R6.1] is 
validated through extensive simulations using Matlab. One simulation result with varying 
SNR is shown in Figure 6.1. 
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Figure 6.1: The impact of the Nakagami-m distribution's shape parameter m and the number of 
NLoS paths on range estimation 

 
Based on experimental simulations varying SNR, environmental conditions, and the number 
of NLoS paths, our method has demonstrated strong performance in diverse and complex 
environments. The number of NLoS paths has emerged as a crucial parameter significantly 
influencing estimation accuracy. As this number increases, our algorithm's accuracy 
improves due to the availability of more eligible samples. Consequently, higher sample 
counts lead to improved estimation precision. The number of eligible samples used is pivotal 
in determining the accuracy of our range estimation algorithm, particularly in environments 
with substantial multipath components where SNR is not particularly low. Thus, in such 
complex scenarios, the EM-ReVAMP algorithm proves highly eƯective for estimating LoS 
distance. 
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7 Conclusions 
 
The collaboration between Eurecom, Firecell, TU Dresden, and Fraunhofer IIS in this project 
has successfully achieved the full implementation of the positioning functionality within the 
Open Air Interface (OAI) 5G-Software Stack. This collaboration has led to significant 
advancements of OAI in the following areas: 

 Integration and Testing: The positioning functionality has been fully integrated and 
tested within the OAI 5G system, ensuring its operational readiness and reliability. 

 NRPPa Implementation: The entire NRPPa stack has been implemented within the 
OAI 5G system, encompassing both the Radio Access Network (RAN) and Core 
components. 

 LMF Functioning and Testing: A working Location Management Function (LMF) has 
been successfully developed, integrated, and tested, confirming its proper 
operation within the OAI-Core and the 5G-System. 

 Positioning Algorithms: Basic Positioning algorithms for UL-TDoA have been 
connected to the 5G-System and can be used within the OAI community. 

7.1 Future Work and Expansion 

With the foundational work completed, the focus in future projects can shift towards 
expanding the system in terms of supported messages and algorithms. Future endeavors 
may include: 

 Enhanced Message Support: Introducing support for a broader range of 
localization-related messages to improve system capabilities and interoperability. 

 Algorithm Development: Developing and integrating more advanced localization 
algorithms to enhance accuracy, eƯiciency, and robustness of the system. 

 Performance Optimization: Continually optimizing the system's performance 
through iterative testing and refinement. 

The successful collaboration has laid a solid groundwork for ongoing and future 
improvements, setting the stage for further advancements in 5G positioning technologies 
within the OAI framework. 
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